102 research outputs found

    The hearing hippocampus

    Get PDF
    The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information – whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia

    An Integrative Tinnitus Model Based on Sensory Precision.

    Get PDF
    Tinnitus is a common disorder that often complicates hearing loss. Its mechanisms are incompletely understood. Current theories proposing pathophysiology from the ear to the cortex cannot individually - or collectively - explain the range of experimental evidence available. We propose a new framework, based on predictive coding, in which spontaneous activity in the subcortical auditory pathway constitutes a 'tinnitus precursor' which is normally ignored as imprecise evidence against the prevailing percept of 'silence'. Extant models feature as contributory mechanisms acting to increase either the intensity of the precursor or its precision. If precision (i.e., postsynaptic gain) rises sufficiently then tinnitus is perceived. Perpetuation arises through focused attention, which further increases the precision of the precursor, and resetting of the default prediction to expect tinnitus

    MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex

    Get PDF
    We recorded neural responses in human participants to three types of pitch-evoking regular stimuli at rates below and above the lower limit of pitch using magnetoencephalography (MEG). These bandpass filtered (1–4 kHz) stimuli were harmonic complex tones (HC), click trains (CT), and regular interval noise (RIN). Trials consisted of noise-regular-noise (NRN) or regular-noise-regular (RNR) segments in which the repetition rate (or fundamental frequency F0) was either above (250 Hz) or below (20 Hz) the lower limit of pitch. Neural activation was estimated and compared at the senor and source levels. The pitch-relevant regular stimuli (F0 = 250 Hz) were all associated with marked evoked responses at around 140 ms after noise-to-regular transitions at both sensor and source levels. In particular, greater evoked responses to pitch-relevant stimuli than pitch-irrelevant stimuli (F0 = 20 Hz) were localized along the Heschl's sulcus around 140 ms. The regularity-onset responses for RIN were much weaker than for the other types of regular stimuli (HC, CT). This effect was localized over planum temporale, planum polare, and lateral Heschl's gyrus. Importantly, the effect of pitch did not interact with the stimulus type. That is, we did not find evidence to support different responses for different types of regular stimuli from the spatiotemporal cluster of the pitch effect (∌140 ms). The current data demonstrate cortical sensitivity to temporal regularity relevant to pitch that is consistently present across different pitch-relevant stimuli in the Heschl's sulcus between Heschl's gyrus and planum temporale, both of which have been identified as a “pitch center” based on different modalities

    Evidence for causal top-down frontal contributions to predictive processes in speech perception

    Get PDF
    Perception relies on the integration of sensory information and prior expectations. Here we show that selective neurodegeneration of human frontal speech regions results in delayed reconciliation of predictions in temporal cortex. These temporal regions were not atrophic, displayed normal evoked magnetic and electrical power, and preserved neural sensitivity to manipulations of sensory detail. Frontal neurodegeneration does not prevent the perceptual effects of contextual information; instead, prior expectations are applied inflexibly. The precision of predictions correlates with beta power, in line with theoretical models of the neural instantiation of predictive coding. Fronto-temporal interactions are enhanced while participants reconcile prior predictions with degraded sensory signals. Excessively precise predictions can explain several challenging phenomena in frontal aphasias, including agrammatism and subjective difficulties with speech perception. This work demonstrates that higher-level frontal mechanisms for cognitive and behavioural flexibility make a causal functional contribution to the hierarchical generative models underlying speech perception.This study was supported by the National Institute for Health Research, the Association of British Neurologists and Patrick Berthoud Charitable Trust (TEC fellowship); the Wellcome Trust (JBR Senior Fellowship, 103838); the Evelyn Trust; and the Medical Research Council Cognition and Brain Sciences unit (MC-A060-5PQ30, MC-A060-5PQ80)

    Where Philosophical Intuitions Come From

    Get PDF
    Little is known about the aetiology of philosophical intuitions, in spite of their central role in analytic philosophy. This paper provides a psychological account of the intuitions that underlie philosophical practice, with a focus on intuitions that underlie the method of cases. I argue that many philosophical intuitions originate from spontaneous, early-developing, cognitive processes that also play a role in other cognitive domains. Additionally, they have a skilled, practiced, component. Philosophers are expert elicitors of intuitions in the dialectical context of professional philosophy. If this analysis is correct, this should lead to a reassessment of experimental philosophical studies of expertise

    Tinnitus: Does Gain Explain?

    Get PDF
    • 

    corecore